Prey items‭ ‬-‭ ‬What did megalodon eat‭?
One thing that needs to be immediately cleared up is that C. megalodon did not eat dinosaurs.‭ ‬This is a myth spread around in popular culture,‭ ‬particularly in films and novels where‭ ‬the C. megalodon‭ '‬villian‭' ‬gets built up to be more dramatic.‭ C. megalodon does not enter the fossil record until the late Oligocene,‭ ‬about‭ ‬36‭ ‬million years after the dinosaurs went extinct at the end of the Cretaceous making it impossible for C. megalodon to have eaten dinosaurs‭ (for a shark that really could have fed upon dinosaurs and large marine reptiles look up Cretoxyrhina‭)‬.
The preferred food for C. megalodon seems to have been cetaceans and particularly small to medium sized whales.‭ ‬There is also evidence that C. megalodon attacked and ate large sea turtles which were presumably too slow to escape with even their shells not providing protection against the colossal bite force of C. megalodon.‭ ‬However what C. megalodon hunted depended upon the age of the individual with smaller C. megalodon hunting animals like dugong,‭ ‬and larger older C. megalodon hunting the larger whales.
The attack strategy of C. megalodon was not exactly refined,‭ ‬but it was effective at taking down whales.‭ ‬The vertebrae of some cetaceans display compression damage which has been interpreted to have been caused by a sudden and massive impact from below.‭ ‬This allowed for the reconstruction of a scenario where C. megalodon would approach a whale from below so as to avoid being seen by its target.‭ ‬Once it had lined itself up for a strike,‭ C. megalodon would use its powerful muscles to propel itself to the surface at high speed and slam into the whale from underneath.‭ ‬If the whale did not end up in the jaws of C. megalodon it would have very likely been stunned by the impact,‭ ‬allowing C. megalodon time for a killing bite.‭ ‬However at least one fossil vertebra is known to exist that shows it was subjected to this style of attack,‭ ‬yet still managed to heal.‭ ‬This shows that in this case the lucky animal did not just survive the attack,‭ ‬it‭ ‬also‭ ‬lived long enough for the injuries to heal.


Special note* - The above sequence is intended to illustrate one possible method that C. megalodon sharks hunted prey. It is not meant to suggest that this was the only way that
Not
C. megalodon sharks hunted.

Examination of fossils that seem to have come from C. megalodon prey show that C. megalodon actually targeted the bony areas like the ribcage.‭ ‬Here C. megalodon had two things in its favour,‭ ‬extremely robust teeth that did not break easily,‭ ‬and a crushing bite force that could easily break bones which in turn caused large scale injuries to the internal organs that they were supposed to protect.‭ ‬Further support for this method comes from compression fractures of the teeth where they have been blunted,‭ ‬which suggests strong impacts with a hard substance such as bone.
When attacking larger whales that were feasibly too big for a bite to an area like the ribs,‭ C. megalodon changed its tactics.‭ ‬Instead of going for the critical organs,‭ C. megalodon attacked the tail to try and immobilise its prey.‭ ‬This is a very intelligent strategy,‭ ‬as even though sharks are almost constantly swimming forward so that they can breathe,‭ ‬they can only maintain extremely fast pursuit speeds for short durations.‭ ‬This is because in sharks the white muscle‭ (‬about‭ ‬90%‭ ‬of the total muscle mass‭) ‬which is used to provide sudden bursts of speed gets tired very quickly,‭ ‬whereas a sharks red muscle‭ (‬roughly‭ ‬10%‭ ‬of the total muscle‭) ‬has less power,‭ ‬but an incredible amount of endurance which is why the lesser red muscle is used for standard cruising.‭ ‬By crippling a large whale,‭ ‬a C. megalodon could take its time feeding instead of over exerting itself.
Some people have made claims that C. megalodon was simply too large to hunt and could only have been a scavenger.‭ ‬In the face of overwhelming fossil evidence that shows injuries,‭ ‬not just tooth marks,‭ ‬to many large cetaceans,‭ ‬such a claim is not just considered unlikely but almost impossible.‭ ‬While most sharks,‭ ‬and carnivorous animals in general,‭ ‬will take the opportunity to feed from a carcass,‭ ‬doing so does not make them exclusive scavengers.‭ ‬Also marine animals that live by just scavenging tend to be bottom feeders that wait for dead animals to sink to the bottom of the sea.‭ ‬Estimating the size of C. megalodon has also brought estimates of how much food it would take to keep it going.‭ ‬Amounts vary greatly but range between‭ ‬600‭ ‬to‭ ‬1200kg of food every day.‭ ‬This is a tremendous amount of food for a scavenger as scavengers tend to be adapted to require very little energy expenditure because they don't know when or where their next meal is coming from.‭ ‬When taking all of the fossil evidence,‭ ‬biometric models and knowledge about shark lifestyles and biology into account,‭ ‬the result is that scavenger is the least likely method of survival for C. megalodon.

Extinction‭ ‬-‭ ‬Why did megalodon disappear‭?
C. megalodon disappears from the fossil record near the end of the first stage (Gelasian) of the of the Pleistocene‭ ‬1.8‭ ‬million years ago.‭ ‬This disappearance is marked by the steady decline in C. megalodon fossils until they disappear completely.‭ ‬While there are a few theories as to why C. megalodon went extinct it seems most likely that a sequence of changing events brought about its downfall rather than just one thing.
The trigger event for the extinction of C. megalodon seems to have been global cooling.‭ ‬To start,‭ ‬if C. megalodon had a warm blooded metabolism through gigantothermy,‭ ‬then it would need a higher calorie intake than an entirely cold blooded creature of similar size.‭ ‬The colder the water the greater the difference,‭ ‬meaning that C. megalodon would have needed an even greater amount of food to deal with the temperature reduction. Additionally gigantothermy is still no substitute for a true warm blooded metabolism and a shark in cooler waters would still have possibly been more sluggish than it would have been in warmer waters, something that would further impede its ability to hunt.

A knock on effect of colder global temperatures is that large amounts of water began to solidify into ice as evidenced by the presence of vast ice sheets across the Northern Hemisphere.‭ ‬The presence of more ice meant that the sea level dropped and the most dramatic consequence of‭ ‬this was the creation of the Isthmus of Panama, something that was also helped by new land formations being built up by ongoing volcanic activity in this area.‭ ‬This essentially created a land bridge between North and South America as well as isolating the Pacific and Atlantic oceans from each other at this point.
The immediate result of the creation of the Isthmus of Panama was the closure of the Central American Seaway which seemed to have been used as a key migration route for whales,‭ ‬as evidenced by the large concentration of whale fossils.‭ ‬This coincides with an overall decline in whale species with much less than half of the Pleistocene whales surviving to the present era.‭ ‬Today there are only‭ ‬6‭ ‬genera of whales as opposed to over‭ ‬20‭ ‬genera during the Miocene.‭ ‬The remaining whales were still migratory but seemed to have preferred Polar Regions,‭ ‬presumably for the greater abundance of invertebrate food that Baleen whales are adapted to eat.‭ ‬The toothed whales do not seem to have been a viable option either as their numbers were also dramatically reduced with the sperm whale being the only large toothed whale to survive to today.‭ ‬With C. megalodon restricted to the warmer ocean waters it no longer had constant year round access to the food supply that it was most adapted to kill.
The huge size of C. megalodon undoubtedly worked against it during these times as the only other prey available were smaller,‭ ‬faster,‭ ‬and even if caught did not provide the same level of sustenance as the larger whales did.‭ ‬Cannibalism has also been suggested as a possible survival strategy for C. megalodon,‭ ‬but this would only work as long as there were other C. megalodon to eat.‭ ‬If this did indeed happen,‭ ‬then all that cannibalism would do is thin out the C. megalodon numbers even further,‭ ‬which in turn would limit the numbers that would reproduce.‭
Linked to this is the potential loss of nursery areas caused by changing sea levels.‭ ‬In fact the very creation of the Isthmus of Panama also seems to have removed one such Nursery area,‭ ‬as evidenced by large numbers of juvenile C. megalodon teeth from this area.‭ ‬Another suspected nursery area was Maryland which was so far north the waters may have become too cold to support C. megalodon.‭ ‬The loss of nursery areas means that the C. megalodon young would themselves have been more susceptible to predators,‭ ‬perhaps even other C. megalodon as they tried to survive.
The final theory involves the rise of new predators with special references made towards the evolution of raptorial delphinids,‭ ‬which today are represented by the Orca,‭ ‬also known as the killer whale.‭ ‬As the Numbers of C. megalodon declined the numbers of delphinids increased.‭ ‬However it is difficult to say if the rise of these new predators played a part in the decline of C. megalodon as it could equally be the decline of C. megalodon that allowed the new predators room to thrive.‭ ‬There is fossil evidence that shows predator/prey interaction between C. megalodon and the delphinids as exhibited by C. megalodon tooth marks on delphinid bones.

1 - Basilosaurus (whale), 2 - C. megalodon - lower average estimate (shark), 3 - Livyatan melvillei - lower estimate (whale), 4 - Pliosaurus funkei, a.k.a Predator X (pliosaur), 5 - Plesiosuchus (thalattosuchian), 6 - Thalattoarchon (ichthyosaur), 7 - Dunkleosteus (arthrodire placoderm), 8 - Shastasaurus (ichthyosaur), 9 - Tylosaurus (mosasaur), 10 - Leedsichthys - upper estimate (fish)), 11 - Brygmophyseter (whale), 12 - Rhizodus (lobe finned fish).

Last survivors‭?
Some people think that C. megalodon survived the Pleistocene era and was still swimming the oceans as recently as the Holocene era.‭ ‬Their proof for this claim comes from a partial C. megalodon tooth that was discovered in‭ ‬1872‭ ‬by the crew of HMS Challenger which when tested in‭ ‬1959‭ ‬was thought to be only‭ ‬10,000‭ ‬years old.‭ ‬However this test measured the levels of manganese dioxide on the fossil,‭ ‬a method which is now considered flawed due to the varying degrees of manganese dioxide that can build up on different fossils,‭ ‬even from the same era.‭ ‬When the tooth was submitted to later radio carbon dating techniques,‭ ‬the tooth was found to have too low a nitrogen level to allow for testing.‭ ‬As such the tooth has since been deemed untestable and previous estimates of C. megalodon becoming extinct during the early Pleistocene remain valid.

Classification‭ ‬-‭ ‬Is megalodon related to the great white shark‭?
Perhaps the greatest point of controversy over C. megalodon is if it is actually related to the Great White Shark that we know today.‭ ‬Comparisons between C. megalodon and the great white mostly come about from the principal that C. megalodon was the biggest shark,‭ ‬and the great white is the biggest shark that we know of today.‭ ‬Also the teeth between the two are often seen as roughly similar.‭ ‬Supporters of C. megalodon within Carcharodon point to the tooth similarity as being the result of both C. megalodon and the great white being descended from Palaeocarcharodon orientalis.
The problem with comparing C. megalodon to the great white on the basis of similar teeth is that the only similarities that exist are that both sharks have teeth that are triangular and serrated.‭ ‬Beyond this the teeth of the great white are more‭ ‬gracile,‭ ‬being much thinner than those of C. megalodon.‭ ‬Also while C. megalodon is thought to have an overall similar tooth layout to the great white shark,‭ ‬the third anterior tooth‭ (‬third front tooth from the centre of the upper jaw‭) ‬of C. megalodon is different in that it points down like the first two,‭ ‬different to how it appears in the great white.‭ C. megalodon anterior teeth also have a characteristic‭ '‬scar‭' ‬shaped like a chevron that lies between the crown and root of the tooth,‭ ‬something that is absent in the great white.
An alternative to placing C. megalodon within the Carcharodon shark genus would be to place it within the older Carcharocles genus.‭ ‬The main argument for this placement is that another large ancient shark named Carcharocles auriculatus is thought to actually be an ancestor to C. megalodon.‭ ‬With teeth that measured up to almost‭ ‬12‭ ‬centimetres in length Carcharocles auriculatus was big but roughly a third smaller than C. megalodon,‭ ‬if you scale it to an‭ ‬18‭ ‬centimetre C. megalodon tooth.‭ ‬Even so,‭ ‬it is quite possible that Carcharocles auriculatus could have grown larger,‭ ‬giving rise to C. megalodon as predators in all environments have a tendency to keep growing bigger until their environment can no longer support further growth.‭
Such a placement of C. megalodon within Carcharocles would actually complete a transition where sharks lost lateral cusps to their teeth.‭ ‬This transition begins with the lateral tooth cusps that are clearly present in Otodus obliquus,‭ ‬the reduced tooth cusps in Carcharocles auriculatus,‭ ‬to no cusps in C. megalodon.‭ ‬These teeth also have chevron shaped scars where the crown meets the root,‭ ‬something which is absent from great white teeth.
Another theory suggests that C. megalodon was ancestral to the great white shark and that over time the shark simply grew smaller.‭ ‬The main problem with this thinking however is that the great white shark was actually swimming in the ocean long before C. megalodon went extinct,‭ ‬with fossil teeth of the great white shark appearing back in the mid Miocene period‭ ‬16‭ ‬million years ago,‭ ‬over‭ ‬14‭ ‬million years before C. megalodon went extinct.‭ ‬Supporters of the theory still insist that the great white could have evolved from a smaller species of C. megalodon.‭ ‬Those familiar with the sabre toothed cat Smilodon may be aware that there were three quite different species of the same genus that not only seem to be descended from the same ancestor,‭ ‬but for a time were all active together in the same time period.‭ ‬It is not too much of a stretch that similar occurrences could happen in other animal groups.‭ ‬Still,‭ ‬there appears to be no transitional link that shows the change From C. megalodon into the great white as the teeth would not just grow smaller,‭ ‬they would steadily change into the great white form.‭ ‬If indeed related,‭ ‬it is more likely that the great white shares a common immediate ancestor with C. megalodon.
In 2012 the theory that C. megalodon and Carcharodon carcharias are not related got a little more support with the description of a new species of Carcharodon, Carcharodon hubbelli, also known as Hubbell’s white shark. The teeth of Carcharodon hubbelli have been interpreted by some to be transitional in form, linking Carcharodon carcharias with Isurus genus which houses the mako sharks. Because most researchers do not consider there to be a direct link between mako sharks and megatoothed sharks like C. megalodon, this might suggest that Carcharodon carcharias is indeed separate from C. megalodon, and that by extension C. megalodon should be placed within the Carcharocles genus.
Any similarities in the overall morphology of C. megalodon and the great white are most likely the result of evolution rather than genetic breeding.‭ ‬This basic body shape is called fusiform,‭ ‬or more loosely‭ '‬torpedo shaped‭'‬,‭ ‬and is based upon a pointed front rising to a broad centre before tapering off to another rearward point.‭ ‬This form has repeated itself in nature countless times,‭ ‬and is certainly not unique to just sharks as it is simply the most efficient form for submerged aquatic travel. The megalodon shark species has also been regarded to some to belong to either the Procarcharodon or the Otodus genus.‭This thinking is down to research that suggests a visible transition from the teeth of the Otodus type genus through to those of the megalodon species which lived‭ ‬later. ‬Again however,‭ ‬differences between researchers vary greatly as to which genus the megalodon species belongs to.

Further reading
- Recherches sur les poissons fossiles/par Louis Agassiz - Neuchatel :Petitpierre. p. 41. - Louis Agassiz - 1833-1843.
- Size of the Great White Shark (Carcharodon) - Science Magazine 181 (4095): 169–170 - John Randall - 1973.
- Carcharodon megalodon from the Upper Miocene of Denmark, with comments on elasmobranch tooth enameloid: coronoi'n - Bulletin of the Geological Society of Denmark (Copenhagen: Geologisk Museum) 32: 1–32. - Svend Erik Bendix-Almgreen - 1983.
- Catalogue of Cuban fossil Elasmobranchii (Paleocene to Pliocene) and paleogeographic implications of their Lower to Middle Miocene occurrence - Boletín de la Sociedad Jamaicana de Geología (Cuba) 31: 7–21 - M. Iturralde-Vinent, G. Hubbel & R. Rojas - 1996.
- The Megatooth shark, Carcharodon megalodon: Rough toothed, huge toothed - Mundo Marino Revista Internacional de Vida (non-refereed) (Marina) 5: 6–11. - J. C. Bruner - 1997.
- Fossil sharks from Jamaica - Bulletin of the Mizunami Fossil Museum. pp. 211–215. - Stephen Donovan & Gunter Gavin - 2001.
- An associated specimen of Carcharodon angustidens (Chondrichthyes, Lamnidae) from the Late Oligocene of New Zealand, with comments on Carcharodon interrelationships - Journal of Vertebrate Paleontology 21 (4): 730–739. - M. D. Gottfried & R. E. Fordyce - 2001.
- The relationship between the tooth size and total body length in the white shark, Carcharodon carcharias (Lamniformes: Lamnidae) - Journal of Fossil Research (Japan) 35 (2): 28–33. - Kenshu Shimada - 2002.
- New Record of the Lamnid Shark Carcharodon megalodon from the Middle Miocene of Puerto Rico - Caribbean Journal of Science 39: 223–227. - Angel M. Nieves-Rivera, Maria Ruizyantin & Michael D. Gottfried - 2003.
- The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe - Palaeogeography, Palaeoclimatology, Palaeoecology 195 (3–4): 389–401 - M. Böhme - 2003.
- Age of Carcharocles megalodon (Lamniformes: Otodontidae) : A review of the stratigraphic records - The Palaeontological Society of Japan (PSJ) (Japan) 75 (75): 7–15. - Hebe Hideo, Goto Mastatoshi & Kaneko Naotomo - 2004.
- Giant-toothed White Sharks and Wide-toothed Mako (Lamnidae) from the Venezuela Neogene: Their Role in the Caribbean, Shallow-water Fish Assemblage - Caribbean Journal of Science 40 (3): 362–368. - O. Aguilera & E. R. D. Aguilera - 2004.
- Tracing the ancestry of the Great White Shark - Journal of Vertebrate Paleontology 26 (4): 806–814 - K. G. Nyberg, C. N. Ciampaglio & G. A. Wray - 2006.
- Late Neogene Oceanographic Change along Florida's West Coast: Evidence and Mechanisms - The Journal of Geology (USA: The University of Chicago) 104 (2): 143–162. - Warren D. Allmon, Steven D. Emslie, Douglas S. Jones & Gary S. Morgan - 2006.
- Three-dimensional computer analysis of white shark jaw mechanics: how hard can a great white bite? - Journal of Zoology 276 (4): 336–342. - S. Wroe, D. R. Huber, M. Lowry, C. McHenry, K. Moreno, P. Clausen, T. L. Ferrara, E. Cunningham, M. N. Dean & A. P. Summers - 2008.
- Miocene sharks in the Kendeace and Grand Bay formations of Carriacou, The Grenadines, Lesser Antilles - Caribbean Journal of Science. 44 (3) pp. 279–286. - Roger Portell, Gordon Hubell, Stephen Donovan, Jeremy Green, David Harper & Ron Pickerill - 2008.
- Giant-toothed white sharks and cetacean trophic interaction from the Pliocene Caribbean Paraguaná Formation - Paläontologische Zeitschrift (Springer Berlin) 82 (2): 204–208. - Orangel A. Augilera, Luis García * Mario A. Cozzuol - 2008.
- Ancient Nursery Area for the Extinct Giant Shark Megalodon from the Miocene of Panama - PLoS ONE (Panama: PLoS.org) 5 (5): e10552 - Catalina Pimiento, Dana J. Ehret, Bruce J. McFadden & Gordon Hubbell - 2010.
- The Great White Shark Carcharodon carcharias (Linne, 1758) in the Pliocene of Portugal and its Early Distribution in Eastern Atlantic - Revista Española de Paleontología (Portugal) 25 (1): 1–6. - Miguel Telle Antunes, Ausenda Cáceres Balbino - 2010.
- Patterns and ecosystem consequences of shark declines in the ocean - Ecology Letters (Blackwell Publishing Ltd) 13 (8): 1055–1071. - Francesco Ferretti, Boris Worm, Gregory L. Britten, Michael J. Heithaus & Heike K. Lotze - 2010.
-‭ ‬Origin of the white shark Carcharodon‭ (‬Lamniformes:‭ ‬Lamnidae‭) ‬based on recalibration of the upper Neogene Pisco Formation of Peru‭ ‬-‭ ‬Palaeontology‭ ‬55‭(‬6‭)‬:1139-1153‭ ‬-‭ ‬D.‭ ‬J.‭ ‬Ehret,‭ ‬B.‭ ‬J.‭ ‬MacFadden,‭ ‬D.‭ ‬S.‭ ‬Jones,‭ ‬T.‭ ‬J.‭ ‬DeVries,‭ ‬D.‭ ‬A.‭ ‬Foster‭ & ‬R.‭ ‬Salas-Gismondi - 2012.‭
- Evolution of white and megatooth sharks, and evidence for early predation on seals, sirenians, and whales - Natural Science (Czech Republic) 5 (11): 1203–1218. - C. G. Diedrich - 2013.
- Sharks and Rays (Chondrichthyes, Elasmobranchii) from the Late Miocene Gatun Formation of Panama - Journal of Paleontology 87 (5): 755–774 - Catalina Pimiento, Gerardo González-Barba, Dana J. Ehret, Austin J. W. Hendy, Bruce J. MacFadden & Carlos Jaramillo - 2013.
- When Did Carcharocles megalodon Become Extinct? A New Analysis of the Fossil Record. - PLOS ONE. 9 (10): e111086. - C. Pimiento & C. F. Clements - 2014.
- Body-size trends of the extinct giant shark Carcharocles megalodon: a deep-time perspective on marine apex predators. - Paleobiology. 41 (3): 479–490. - C. Pimiento & M. A. Balk - 2015.
- Record of Carcharocles megalodon in the Eastern Guadalquivir Basin (Upper Miocene, South Spain). Estudios Geológicos. 71 (2): e032. - M. Reolid & J. M. Molina - 2015.
- Geographical distribution patterns of Carcharocles megalodon over time reveal clues about extinction mechanisms. - Journal of Biogeography. 43 (8): 1645–1655. - C. Pimiento, B. J. MacFadden, C. F. Clements, S. Varela, C. Jaramillo, J. Velez-Juarbe & B. R. Silliman - 2016.
- The size of the megatooth shark, Otodus megalodon (Lamniformes: Otodontidae), revisited. - Historical Biology: 1–8. - Kenshu Shimada - 2019.
- The Early Pliocene extinction of the mega-toothed shark Otodus megalodon: a view from the eastern North Pacific. - PeerJ. 7: e6088. - R. W. Boessenecker, D. J. Ehret, D. J. Long, M. Churchill, E. Martin & S. J. Boessenecker - 2019.
- The transition between Carcharocles chubutensis and Carcharocles megalodon (Otodontidae, Chondrichthyes): lateral cusplet loss through time. - Journal of Vertebrate Paleontology. 38 (6): e1546732. - V. J. Perez, S. J. Godfrey, B. W. Kent, R. E. Weems & J. R. Nance - 2019.
- Body dimensions of the extinct giant shark Otodus megalodon: a 2D reconstruction. - Scientific Reports. 10 (14596): 14596. - J. A. Cooper, C. Pimiento, H. G. Ferrón & M. J. Benton - 2020. ----------------------------------------------------------------------------

Random favourites

If Feed and Grow: Fish crashes, Feed and Grow: Fish will not start, Feed and Grow: Fish not installing, there are no controls in Feed and Grow: Fish, no sound in game, errors happen in Feed and Grow: Fish – we offer you the most common ways to solve these problems.

Fish Feed And Grow Megalodon Not Showing Up Like

Be sure to update your graphics card drivers and other software

Before letting out all of your bad feelings toward development team, do not forget to go to the official website of your graphics card manufacturer and download the latest drivers. There are often specially prepared optimized drivers for specific game. You can also try to install a past versions of the driver if the problem is not solved by installing the current version. It is important to remember that only the final version of the video card driver must be loaded – try not to use the beta version, since they can have some terrible bugs.
Do not also forget that for good game operation you may need to install the latest version DirectX, which can be found and downloaded from official Microsoft website.

Feed and Grow: Fish not starting

Many of the problems with games launching happen because of improper installation. Check, if there was any error during installation, try deleting the game and run the installer again, but before install don’t forget to disable antivirus – it may often mistakenly delete files during installation process. It is also important to remember that the path to the folder with a game should contain only Latin characters and numbers.
You also have to check whether there is enough space on the HDD for installation. You can also try to run the game as an administrator in compatibility mode with different versions of Windows.

Feed and Grow: Fish crashes. Low FPS. Friezes. Hangs

Your first solution to this problem install new drivers for a video card. This action can drastically rise game FPS. Also, check the CPU and memory utilization in the Task Manager (opened by pressing CTRL + SHIFT + ESCAPE). If before starting the game you can see that some process consumes too many resources - turn off the program or simply remove this process from Task Manager.
Next, go to the graphics settings in the game. First – turn off anti-aliasing and try to lower the setting, responsible for post-processing. Many of them consume a lot of resources and switching them off will greatly enhance the performance, and not greatly affect the quality of the picture.

Feed and Grow: Fish crashes to the desktop

If Feed and Grow: Fish often crashes to the desktop, try to reduce quality of the graphics. It is possible that your PC just does not have enough performance and the game may not work correctly. Also, it is worth to check out for updates - most of today's games have the automatic patches installation system on startup if internet connection is available. Check to see whether this option is turned off in the settings and switch it on if necessary.

Black of black screen in the Feed and Grow: Fish

Fish feed and grow megalodon not showing up youtube
The most common issue with black screen is a problem with your GPU. Check to see if your video card meets the minimum requirements and install the latest drivers. Sometimes a black screen is the result of a lack of CPU performance.
If everything is fine with your hardware and it satisfies the minimum requirements, try to switch to another window (ALT + TAB), and then return to the game screen.

Feed and Grow: Fish is not installed. Installation hangs

First of all, check that you have enough space on the HDD for installation. Remember that to work properly installer requires the declared volume of space, plus 1-2 GB of additional free space on the system drive. In general, remember this rule – you must always have at least 2 gigabytes of free space on your system drive (usually it’s disk C) for temporary files. Otherwise, the games and the other software may not work correctly or even refuse to start.
Problems with the installation may also be due to the lack of an internet connection or it’s instability. Also, do not forget to stop the antivirus for the time game installation – sometimes it interferes with the correct file copy, or delete files by mistake, mistakenly believing they are viruses.

Saves not working in Feed and Grow: Fish

By analogy with the previous solution, check for free space on HDD - both on where the game is installed, and the system drive. Often your saves are stored in a folder of documents, which is separate from the game itself.

Controls not working in Feed and Grow: Fish

Fish Feed And Grow Megalodon Not Showing Up Youtube

Sometimes the controls in game do not work because of the simultaneous connection of multiple input devices. Try disabling gamepad, or, if for some reason, you have two connected keyboards or mouses, leave only one pair of devices. If your gamepad does not work, remember - the games usually officially support only native Xbox controllers. If your controller is defined in system differently - try using software that emulates the Xbox gamepad (eg, x360ce - step by step manual can be found here).

No sound in Feed and Grow: Fish

Check if the sound works in other programs. Then check to see if the sound is turned off in the settings of the game, and whether there is correct audio playback device selected, which is connected your speakers or headset. After this check volumes in system mixer, it can also be turned off there.
If you are using an external audio card - check for new drivers at the manufacturer's website.